Abstract

Introduction: Occupational injuries as a workforce’s health problem are very important in large-scale workplaces. Analysis and modeling the health-threatening factors are good ways to promote the workforce’s health and a fundamental step in developing health programs. The purpose of this study was ANN modeling of the severity of occupational injuries to determine the health-threatening factors and to introduce a model to predict the severity of occupational injuries. 

Methods: This analytical chain study was conducted in 10 large construction industries during a 10-year period (2005-2014). Nine hundred sixty occupational injuries were analyzed and modeled based on feature weighting by the rough set theory and artificial neural networks (ANNs). Two analytical software programs, i.e., RSES and MATLAB 2014 were used in the study.

Results: The severity of occupational injuries was calculated as 557.47 ± 397.87 days. The findings of both models showed that the injuries' severity as a health problem resulted in various factors, including individual, organizational, health and safety (H&S) training, and risk management factors, which could be considered as causal and predictive factors of accident severity rate (ASR). 

Conclusion: The results indicated that ANNs were a reliable tool that can be used to analyze and model the severity of occupational injuries as one of the important health problems in large-scale workplaces. Additionally, the combination of rough set and ANNs is a good and proper chain approach to modeling the factors that threaten the health of workforces and other H&S problems.

 

Keywords: workforce’s health, occupational injury, accident severity rate (ASR), artificial neural networks (ANN), rough set theory
 
 
» HTML Fulltext    » PDF Fulltext    » doi: 10.19082/1515
Nike x Fragment WomenCheap Air Jordan 1 Mid Smoke Grey Black Shoes 554724-092

Current Issue

Volume 13, Issue 1, January-March 2021


The worldwide spread of COVID-19 as an emerging, rapidly evolving situation, and the dramatic need of urgent medicine or vaccine, has rapidly brought new hypotheses for pathophysiology and potential medicinal agents to the fore. It is crucial that the research community provide a way to publish this research in a timely manner.

 

To contribute to this important public health discussion, the Electronic Physician Journal is excited to announce a fast-track procedure to help researchers publish their articles on COVID-19 related subjects that fall under the broad definition of public health, internal medicine, and pharmacology. We are especially welcome to all hypotheses about the pathological basis of the COVID-19 infection and the possible characteristics of potential medicine and vaccine. Submit your manuscript here

 


 The  most recent editorial (June 2020)

Lessons from COVID-19 pandemic and the Morocco’s success story.

An editorial by Dr. Benksim Abdelhafid (Morocco)

Read more.


 

The 6th World Conference on Research Integrity (WCRI) is to be held on June 2-5, 2019 in Hong Kong.

The WCRI is the largest and most significant international conference on research integrity. Since the first conference in Lisbon in 2007, it has given researchers, teachers, funding agencies, government officials, journal editors, senior administrators, and research students opportunities to share experiences and to discuss and promote integrity in research. Read more:


 

TDR Clinical Research and Development Fellowships

Call for applications

Deadline for submission: 7 March 2019, 16:00 (GMT)

TDR provides fellowships for early- to mid-career researchers and clinical trial staff (e.g. clinicians, pharmacists, medical statisticians, data managers, other health researchers) in low- and middle-income countries (LMICs) to learn how to conduct clinical trials. Read more:


Meta-Analysis Workshops in New York, USA, and London, UK, in April and May 2019

Don't miss this exceptional opportunity to learn how to perform and report a Meta-analysis correctly. Two Meta-analysis workshops are organized in April and May 2019 by Dr. Michael Borenstein in New York, USA (April 08-10, 2019) and London, UK (May 27-29).

About the Instructor

Dr. Michael Borenstein, one of the authors of Introduction to Meta-Analysis, is widely recognized for his ability to make statistical concepts accessible to researchers as well as to statisticians. He has lectured widely on meta-analysis, including at the NIH, CDC, and FDA. Read more: